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A method of computing small self-oscillations of the systems of ordinary differ- 

ential equations which is sufficiently simple for pactical applications, is given. 
The coefficients of the corresponding expansions are obtained from the linear 

algebraic equations. A detailed analysis of the problem on the origination of 

self-oscillations from the state of eq@ibrium was carried out in [l] for the sys- 

terns of differential equations on a plane. This was developed further in [2 - 61. 

In p - 111 the problem on the origination of self-oscillations was studied forthe 

systems with lag. The self-oscillations are normally determined by expanding 

them in fractional powers of a small parameter. The difficulties which arise 

from the lack of uniqueness in determining the expansion coefficients, can be 

overcome fll] by separating the coefficients of the initial expansions into two 

groups; the coefficients of the first group are then determined with the accuracy 
of up to certain parameters which enter the equations in a nonlinear manner,and 

the equations determining the second group of the coefficients are solved with 

the aid of the refined parameters of the first group. 
Below we give another method of obtaining an asymptotic expansion of self- 

oscillations and of their periods, in which the coefficients of the asymptotic ex- 

pansion are determined consecutively and uniquely from the recUrrent linear 

relations. 

1. Let R* be an n-dimensional Euclidean space and Bn (r) = {x E Rn : 11 x 1) < r). 
Let the function F (5, e) be defined in Bn (r) x [O, E,,] (e, > 0) and analytic, and let 

it assume values in R’“. We shall consider the following system of ordinary differential 

equations : dx i dt = b’ (x, E) (1.1) 

We assume that F (0, E) s 0 , consequently the system is in a null state of equilibrium 

for all F . Let also the matrix A, = F, (0, 0) have a pair of pure imaginary character- 

istic roots fii and let the remaining characteristic roots lie in the left complex half- 
plane. We denote by el and e2 the vectors for which Ae, = ea, Ae, = -e,. Then, for 
the conjugate matrix A,* vectors gl and g2 can be found such that Alag = -gat 
AI*& = 6’1 and gi, ei = Sij (i, ]‘= 1, 2). We assume that 

al = l/z [(gl, Bier) + (gz, Blez)] # 0, BI ~= &Fx (0, 0) (1.2) 

Then for small F , the matrix AI + eB, has a pair of characteristic roots zl,s (a) = 
CL (e) & ifi (t;j, where cc (0) = U, $ (0) = 1 and a’ (0) = a,. Thus, at small e > 0 , the 
stability of the null state of equilibrium is determined by the sign of al. 

When e G 0, the linear terms no longer determine the stability of the null state of 
equilibrium. We shall assume that the null solution is either asymptotically stable, or 
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unstable. Following [6] we shall say that at e = 0 there is a “change in stability” of the 
null state of equilibrium if for e = 0 the null state of equilibrium of the system (1.1) is 
asymptotically stable (unstable), while for small E >O , it is unstable (asymptotically 

stable). This definition differs somewhat from the usual one (see e. g. [l] ) , however we 
find it useful when considering wider classes of systems with a small parameter accom- 

panying the derivative, and of the systems with a lagging argument. It was shown in 

[6, 91 that the change in stability of the state of equilibrium is accompanied by the onset 
of self-oscillations. 

2. We shall seek an asymptotic expansion of this self-oscillation in the form of a 
series in integral powers of some auxiliary parameter c which is geometrically equiva- 

lent to the length of the projection of the initial condition x0 of some self-oscillation 

on e,. We shall also expand the small parameter E into a special series in powers of c. 

Thus we choose, in fact, the parameter E in such a manner that the system (1.1) has a 
self-oscillation, the projection c of which on the vector el is given. When E is varied 

monotonously, the parameter c varies in the same manner. Let 

F (5, e) = p, (X) + eF1 (x) + e2F, (x) + . . . 

We set three formal series 

5 (t, c) = c5i (z) + c2z1 (z) + . . . (2.1) 

h (c) = 1 + h,c + h,? + . . .) y (c) = VlC + yzc2 + . . . 

Here zi (t) are 2n-periodic vector functions which assume values in H” and are, as yet, 

unknown, 11, and yi are numbers which are also unknown and c is a small positive para- 
meter. In what follows, we shall choose the functions zi (z) so that 

(gl, 51 (0) - i = (g1, xh.+i (0)) = (SD “k (0)) = 0, (k = i, 2, - * .) (2.2) 

The series (2.1) and the integer m > 2 are obtained from the formal identity 

d3: (T, c) 
(2.3) 

dz z h (c) {Fo [x (Z, c)] + 7 m-1 (4 Fl [x (z, c)] t T 2(“‘-1) (c) Ft [x (z, c)] + . ..} 

by equating the coefficients of like powers of c. Clearly x1, . . ., I+,_~ and hi, . . , h,_,. 
are determined from the formal identity 

dx (z, c)/dz E h. (c) P, [x (t, c)] (2.4) 

Let F,, (x) =A,X + A, (x, x) -I- A, (x, x, x) -I-. . ., where AS (yl, . . . ,y,<) are polylinear 
symmetric operators acting from Kn x . . . X H” into I?. Then for x1 we have the 

following equation 
dx,/dz = A,x, 

The above equation has a two-parameter set of Zn-periodic solutions 5 = Q(PI (z) -t 

~8~ (Z), and it can be assumed that cpl (0) = el, cpz (0) = r,. From (2.2) it follows that 

x1 = cpl. Let us assume that x1, . . ., xp and It,, . . ., /L~_~ are successively determined. 
Then for determination of zpfl and’hp we have 

dXp+i I dr = A lxp+l + hpAlx~ + Xp+, (x1, . . 1, xp, h,, . . . . $_,) (2.5) 

In order for the above equation to have a &-periodic solution, it is necessary and suffi- 
cient that z ,. 

aP 
:_ & 5 (hp. 1,x1 -/- xp+l, $1) dz -: 0 (2.6) 

0 
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where I#~ and qz are 2n-periodic solutions of the conjugate system y =- -A,*, y, satis- 

fying the conditions WI (0) = g, and wz (0) = g,. Since A,(P, = -(F~ and ((F~, ya) f 1, 

it follows that hp is uniquely obtained from (2.7). The relation (2.6) may or may not 

hold. When it does hold, Eq.(2.5) hasa 2n-periodic solution which is determined uniquely 

from the conditions (2.2). Otherwise we have aP i; 0, and the sign of aP determines the 
stability of the null state of equilibrium of (1.1) with E = 0 (see [12]). 

Let P be the first number for which aP # 0. We set M = I, + 1 and extend the proce- 

dure of determining z~+~, xPF2, . . .; /I,, /I~+~, . . ., ,:I and ys beginning from this num- 
ber and using the formal identity (2.3). 

Let us write F, (x) in the form 

E’, (5) = BIS + B, (2, x) + . . . 

where B, (yl, . . ., Y,) denote the polylinear symmetric operators acting from Hi* x 

. . . x li” into tP. 

From (2.4) we obtain the following equation for the Zn-periodic function ~,,+r (z) : 

drp+,idz = Alxp+l -I- hpAg1 + VIP&~ -t xP+l (Xl, . . ., XP, 111, * * *I lip-d (2.8) 

Simple calculations show that 
zx zx 

s 
. (mpl, $1) fh -L_ 2na1, 

s 
* (Acpl, $1) d-c : 0 

0 0 

where aI is determined from (1.2). Therefore Eq. (2.8) has a 2n-periodic solution if 

IP ptl’ 44 + (BlCpl, $2) T,~] dt -z 0 
0 

The first of the above relations yields y1 = (-aP/ul)‘lP, and the second one yields hp. 

Taking into account (2.2) we obtain from (2.8) a unique xptl . Let us assume that 

sp+l’ * . *f 5p+s__1’ . hp, . . ., tLptF_2; y1, . . . ( Ys_l have all been consecutively deter- 

mined. A simple calculation shows that for the determination of xptsr J~Pts-l and Ys we 
obtain the following expression : 

dZpts ldr = A1xptS + hpts-lh c PT;-~T,B,x~ -I- 
(2.9) 

Xpts@l, . . .v zp+o_l; hl, ’ . ., hpts_g ~1, . . ., T,_,) 

Since y1 # 0, the condition of existence of a 2;z-periodic solution of (2.9) yields ~~ and 

$,+d_-lj and hence xPts (uniquely). 
Thus the determination of xi, ILi_1 and vi+ can be extended to any integral value 

of k>o. 

9 I Let us now have some definite value for a > 0 , and attempt to determine the 
self-oscillation with the accuracy of up to e ” p (k is an integer). Using the procedure 

given above we construct l;, hi-r: and J+._~ (i = I, . . ., k) and set 
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k k k-P 

Xk (z, c) = 2 CiXi (7), h, (c) = 1 + 2 Cihi. 
i=1 i=l i=l 

PJext, we use the method of undetermined coefficients to find the function c = c (&p) 
as the solution of the equation vk (c) = a1 ’ I’. Finally we set 

Sk* (t, a) = s,[t/h (c(~“~~~, c (azip)] 
This yields an approximate self-oscillation with the accuracy of up to ski p. 

To justify this procedure we note that for the system (1.1) there exists a unique self- 
oscillation I (t, e) which can be expanded together with its period 2’ (e) into an asymp- 
totic expansion in the fractional powers of the parameter e 

z(t, e)=2,(t)e~‘P+,~(t),2ip+. . ., T(E)= 2n+ T,E’/~+ T,@P+. . . 

on each finite segment 0 < z < A , Moreover, this solution satisfies the conditions 
(&, 2 (0, a)) = (--at i an) aliP + 0 (El’ “1, (&r .z (0, E)) = 0 (this has actuatly been 
stated in 163). If we now set c = (gl, 5 (0, c)), then E”~ = ylc 5 Wa -/- . . . and the 
solution x (t, E) and period T (E) can be uniquely determined by the series 

z (.t, c) = 5r* (z) c + 22 (z) cB + * . f 

T (c) = 2z (1 + hlC + h,2 -t * * ‘1, z = t J (1 + il$ + 0 . *) 

where 5~ (?) are 2n-periodic functions satisfying the conditions (2.2). The above expan- 
sions were obtained using the method described above. 

Example. We consider the equation 

x1 + EX’ + 5 - Bx” -t_ ax'3 = 0 (3.1) 

where the prime denotes the time derivative, and find a small self-oscillation with the 
accuracy of o fs), To do this. we make the substitution t = Hz and seek zc (z) in the form 

z 09 = 21 @I c + "2 t-q c2 + "c3 (8) c3 + * . . 

where xi (z) are Zn-periodic functions. Let us set 

Hz 1 +h,Cs+ h,C3$. I. ., a ::= (Tl” + rac2 .Jr . . J+l 

where hi and yi are coefficients. as yet unknown. A simple calculation shows that 

If%** = 9°C + x;*c* + (za” + IL$QzI”) ca + @aa” + haSa” -t hs%“) 8 + - * * 

Nx’ = CXI’ + cSx,’ + . . . 

H3x = xlc -i_ ~3c2 t_ (3h,q + zs) c3 + (~4 + 3h,% + 3h,4 C4 + - - - 
1139 = 513ca + 235~3~3 + (3h,~,a + 2~9, + sas) 8 + . . . 

x-3 = x1'3c3 + 31c1’3x,‘c4 + . * . 

where dot superscripts denote derivatives with respect to T . We substitute the above ex- 
pressions into the equation obtained from (3.1) by replacing t , and equate the coefficients 
of like Irowers of c. For x1 we obtain the equation ~1.’ + I~ = 0 iiom which it follows 
that xl = cos z. Further, x”, + x2 = /3 coa ‘d a. From this we obtain, taking into account 
the condition that 2, (6) = xzn’ (0) = 0, 

2, (T) = l/s B (3 - 2cos z - cos 21) 
Calculation shows that in the present case we have m = 3. 

Equating the coefficients of c cubed, we obtain the following equation for x3 : 
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x3 .. + 53 = yX2sin r - 2ha cos z + B/P cos z (3 - 2~0s z - ~0s 2%) + a sin3 z 

The condition of existence of a 2n-periodic solution to this equation yields 

1’1 = 112 q h, = 5/i282 

It can be shown that 3s has the form 

~3 = ao i- altos Z i- @in r + ascos 2r $ ascos 32 + basin 32 

Finally, equating the.coefficients of c4 we obtain 

xaEa” + x4 = -h,z,“ - h,rl” - yi”‘tz’ - 2y,y,2,‘ - 3h,xa -3hs4 + 
p (3k2r13 + 25ixs + 9%) - 3ar,‘%‘z 

The condition of orthogonality of the function sin -i and of the right-hand side of the 

last equation,yields --“/~iy,~ + ylyz = 3/&. From this it follows that y2=- :/,$ vxa.’ 
From the relation ~‘12 =: ~ic + JL_,C~ + . . . it follows that 

c = a,e’,? + GZE -/- . . ., CT1 = -2 1/-3aJ 3a, 02 = -48 i 9a 

therefore we have 
&‘iZ cos d 

x-- 1/-_ 
j-Y... 

t 
z --7- 1 - 5%/ 9% + . . . 

The procedure shown here can be generalized to embrace the systems of singularly 

perturbed equations [S]. It can also be used to compute 
terns with lagging arguments. 
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The problem of determining the mean stress and the other macrovariables ori- 

ginates upon passing from the equations of motion which are valid in the micro- 

scale, to the macroscopic equations which describe the motion of continuous 
media (suchas a turbulized fluid,an elastic medium with microdefects, the suspen- 

sion of gas bubbles or solid particles in a fluid, etc.). The mean value of the 
stress tensor over a volume was introduced in the monograph [I], and precisely 

this quantity was used in the governing relations to compute the Einstein visco- 

sity of suspensions. Moreover, some effective representation in terms of integrals 
over surfaces [l] was used in specific calculations of these means with respect 
to the volume, Later, Batchelor [ 21, and some other authors after him [3], used 
precisely these means with respect to the volume as the stresses in the macro- 

equations of motion by assuming the equivalence between the average with res- 

pect to a volume and with respect to a surface. Hence, in particular, the abso- 
lute symmetry of the macrostress tensor follows in the above-mentioned cases. 

In this paper it is shown that the average of the microstress tensor and the 
microflux of the momenta with respect to the volume according to the rule in 

[l] determines only some symmetric part of the complete macrostress tensor. 

For the simple case of a viscous fluid moving inhomogeneously over a micro- 
level, this mean of the tensor with respect to the volume is related linearly to 
the mean strain rates. Moreover, the representation used in [1] permits clarifi- 

cation of the essential difference between the mean stresses with respect to the 
volume and with respect to the surfaces, in the general case. 

The method of integrating the microequations with respect to the vloume 

[4 - 61 naturally results in the appearance of stresses in the macroequations, 
which are the means with respect to the differential macroareas. It is essential 
that the macrostress tensory is hence generally nonsymmetric although the equa- 
tions of motion in the microscale correspond to symmetric continuum mechanics. 
It is this consideration which permitted the development of the continuum equa- 
tions of motion of a suspension, which reflects the effect of nonequilibrium intrin- 
sic rotation of the suspended particles [7], and the case of a turbulized fluid with 

anisotropies of eddy character is set in conformity to the nonzero antisymmetric 
part of the Reynolds stresses [8]. 


